首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19235篇
  免费   3409篇
  国内免费   2295篇
化学   13456篇
晶体学   199篇
力学   1119篇
综合类   131篇
数学   2776篇
物理学   7258篇
  2024年   18篇
  2023年   416篇
  2022年   396篇
  2021年   589篇
  2020年   856篇
  2019年   769篇
  2018年   689篇
  2017年   642篇
  2016年   971篇
  2015年   919篇
  2014年   1074篇
  2013年   1457篇
  2012年   1692篇
  2011年   1795篇
  2010年   1267篇
  2009年   1143篇
  2008年   1306篇
  2007年   1143篇
  2006年   1016篇
  2005年   918篇
  2004年   731篇
  2003年   612篇
  2002年   659篇
  2001年   535篇
  2000年   426篇
  1999年   414篇
  1998年   327篇
  1997年   300篇
  1996年   317篇
  1995年   290篇
  1994年   233篇
  1993年   162篇
  1992年   165篇
  1991年   158篇
  1990年   118篇
  1989年   93篇
  1988年   53篇
  1987年   55篇
  1986年   71篇
  1985年   47篇
  1984年   31篇
  1983年   26篇
  1982年   15篇
  1981年   11篇
  1980年   4篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1969年   1篇
  1957年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
3D perovskite CsPbBr3 has recently taken a blooming position for optoelectronic applications. However, due to the lack of natural anisotropy of optical attributes, it is a great challenge to fulfil polarization-sensitive photodetection. Here, for the first time, we exploited dimensionality reduction of CsPbBr3 to tailor a 2D-multilayered hybrid perovskite, (TRA)2CsPb2Br7 ( 1 , in which TRA is (carboxy)cyclohexylmethylammonium), serving as a potential polarized-light detecting candidate. Its unique quantum-confined 2D structure results in intrinsic anisotropy of electrical conductivity, optical absorbance, and polarization-dependent responses. Particularly, it exhibits remarkable dichroism with the photocurrent ratio (Ipc/Ipa) of ≈2.1, being much higher than that of the isotropic CsPbBr3 crystal and reported CH3NH3PbI3 nanowire (≈1.3), which reveals its great potentials for polarization-sensitive photodetection. Further, crystal-based detectors of 1 show fascinating responses to the polarized light, including high detectivity (>1010 Jones), fast responding time (≈300 μs), and sizeable on/off current ratios (>104). To our best knowledge, this is the first study on 2D Cs-based hybrid perovskite exhibiting strong polarization-sensitivity. The work highlights an effective pathway to explore new polarization sensitive candidates for hybrid perovskites and promotes their future electronic applications.  相似文献   
102.
Graphene oxide (GO) is a versatile platform with unique properties that have found broad applications in the biomedical field. Double functionalization is a key aspect in the design of multifunctional GO with combined imaging, targeting, and therapeutic properties. Compared to noncovalent functionalization, covalent strategies lead to GO conjugates with a higher stability in biological fluids. However, only a few double covalent functionalization approaches have been developed so far. The complexity of GO makes the derivatization of the oxygenated groups difficult to control. The combination of a nucleophilic epoxide ring opening with the derivatization of the hydroxyl groups through esterification or Williamson reaction was investigated. The conditions were selective and mild, thus preserving the structure of GO. Our strategy of double functionalization holds great potential for different applications in which the derivatization of GO with different molecules is needed, especially in the biomedical field.  相似文献   
103.
Akaganeite (β-FeOOH) is a widely investigated candidate for photo(electro)catalysis, such as water splitting. Nevertheless, insights into understanding the surface reaction between water and β-FeOOH, in particular, the hydrogen evolution reaction (HER), are still insufficient. Herein, a set of first-principles calculations on pristine β-FeOOH and halogen-substituted β-FeOOH are applied to evaluate the HER performance through the computational hydrogen electrode model. The results show that the HER on β-FeOOH tends to occur at Fe sites on the (010) surface, and palladium and nickel are found to serve as excellent co-catalysts to boost the HER process, due to the remarkably reduced free energy change of hydrogen adsorption upon loading on the surface of β-FeOOH, demonstrating great potential for efficient water splitting.  相似文献   
104.
A cobalt(II)-catalyzed [4+2] annulation of picolinamides with alkynes via C−H bond activation has been developed. The operationally simple annulation reaction allows for the synthesis of acyl-substituted 1H-benzoquinoline bearing multiple aromatic rings (up to 96 % yield) without co-oxidant or other oxidation factors under mild conditions. Several control experiments were carried out. This practical [4+2] annulation provides an efficient route to access highly functionalized compounds.  相似文献   
105.
A metal-free, visible-light-induced oxidative C−C bond cleavage of cycloketones with molecular oxygen is described. Cooperative Brønsted-acid catalysis and photocatalysis enabled selective C−C bond cleavage of cycloketones to generate an array of γ-, δ- and ϵ-keto esters under very mild conditions. Mechanistic studies indicate that singlet molecular oxygen (1O2) is responsible for this transformation.  相似文献   
106.
A non-oxidant and metal-free strategy for synthesizing iso-coumarin by using a continuous electrochemical microreactor to initiate an oxidative cyclization reaction of o-(1-alkynyl) benzoate and radicals. This efficient and clean continuous electrosynthesis method not only avoids the complicated gas protection operation and production of by-products in the batch processes, but also help to overcome the difficulty that batch metal catalysis and electrocatalysis are difficult to scale up, and has the potential for pilot-scale experiment.  相似文献   
107.
The current craze for research around the spin crossover phenomenon can be justified to some extent by the mechanical properties due to the decrease of volume associated with the transition of the metal ion from the HS state to the LS state. As demonstrated here, the molecular complex [Fe(PM-pBrA)2(NCS)2] exhibits, on the contrary, an increase of the unit-cell volume from HS to LS. This counter-intuitive and unprecedented behavior that concerns both the thermal and the photoexcited spin conversions is revealed by a combination of single-crystal and powder X-ray diffraction complemented by magnetic measurements. Interestingly, this abnormal volume change appears concomitant with the wide rotation of a phenyl ring which induces a drastic modification, though reversible, of the structural packing within the crystal. In addition, the light-induced HS state obtained through the Light-Induced Excited Spin-State Trapping shows a remarkably high relaxation temperature, namely T(LIESST), of 109 K, one of the highest so far reported. The above set of quite unusual characteristics opens up new fields of possibilities within the development of spin crossover materials.  相似文献   
108.
Solution-based, anionic doping represents a convenient strategy with which to improve upon the conductivity of candidate anode materials such as Li4Ti5O12 (LTO). As such, novel synthetic hydrothermally-inspired protocols have primarily been devised herein, aimed at the large-scale production of unique halogen-doped, micron-scale, three-dimensional, hierarchical LTO flower-like motifs. Although fluorine (F) doping has been explored, the use of chlorine (Cl) dopants is the primary focus here. Several experimental variables, such as dopant amount, lithium hydroxide concentration, and titanium butoxide purity, were probed and perfected. Furthermore, the Cl doping process did not damage the intrinsic LTO morphology. The analysis, based on interpreting a compilation of SEM, XRD, XPS, and TEM-EDS results, was used to determine an optimized dopant concentration of Cl. Electrochemical tests demonstrated an increased capacity via cycling of 12 % for a Cl-doped sample as compared with pristine LTO. Moreover, the Cl-doped LTO sample described in this study exhibited the highest discharge capacity yet reported at an observed rate of 2C for this material at 143mAh g−1. Overall, these data suggest that the Cl dopant likely enhances not only the ion transport capabilities, but also the overall electrical conductivity of our as-prepared structures. To help explain these favorable findings, theoretical DFT calculations were used to postulate that the electronic conductivity and Li diffusion were likely improved by the presence of increased Ti3+ ion concentration coupled with widening of the Li migration channel.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号